

GymApp.life
University of Waterloo

SE 464

Bo Peng
b24peng

Dongyu Zheng

d28zheng

Gautam Gupta
g7gupta

Yuezhou Gao

y238gao

Table of Contents

1 Architectural Design 3
1.1 Functional Requirements 3
1.2 Non-functional Properties 3
1.3 Components 3
1.4 External Services 4

1.4.1 Facebook API 4
1.4.2 Google Maps API 4
1.4.3 Waterloo Portal API 4

1.5 Connectors 4
1.6 Configurations 5

1.6.1 Component Diagram 5
1.6.2 Physical Diagram 6

1.7 Architectural Design 7
1.7.1 Architectural styles 7

1.7.1.1 Client-server (layered) 7
1.7.1.2 Blackboard (shared memory) 7
1.7.1.3 Publish-subscribe / event-based (implicit invocation) 7

1.7.2 Key architecture decisions 7
1.7.2.1 Why ELB? 7
1.7.2.2 Why RDS? 8
1.7.2.3 Why Django? 8
1.7.2.4 Why Keepalived? 8

1.7.3 Satisfying NFPs 8
1.7.3.1 Dependability 8
1.7.3.2 Portability 9

2 Design 10
2.1 Backend Design 10

2.1.1 Strategy Pattern 11
2.1.2 Object Adapter Pattern 12
2.1.3 Factory Method 13

2.2 Frontend Design 14
2.2.1 Composite Pattern 15
2.2.2 Decorator Pattern 16
2.2.3 Event-Based Implicit Invocation 17
2.2.4 Frontend Framework Selection 17

2.3 Data Flow Design 18

1

2.3.1 User onboarding workflow 18
2.3.2 Analytics workflow 19

2.4 Coupling 20
2.4.1 Adding new workout programs 20
2.4.2 Backend vs. frontend 20
2.4.3 New browser / device support 20

3 Participation Journal 21

2

1 Architectural Design
In this document, we will outline the architectural description for GymApp.life. We will go over
the functional and nonfunctional requirements, components, connectors, configurations, and
architectural design of the system.

1.1 Functional Requirements
GymApp.life is a web and mobile solution to track and inspire workouts, diet, and progress. The
main functional requirements are listed below.

1. Choose, view, and log a workout
2. View and log a diet
3. Upload and view media
4. View analytics
5. User profiles and gyms nearby

1.2 Non-functional Properties
To provide a seamless and excellent user experience, we have determined the following
non-functional attributes to be critical to the product’s success. In section 1.7.3, we explain how
we satisfied our NFPs through key design decisions.

1. Dependability
a. Backups and redundancy to avoid single points of failure
b. Automatic failovers
c. Offline data persistence on the mobile application

2. Portability
a. App works on any modern web browser and mobile browser
b. Data seamlessly sync between the web and mobile app

1.3 Components
Our system can be broken down into four major high-level components.

User Profile: The user profile represents the user entity. Each user entity may only have one
active workout program. The user profile has relationships with the workout program, nutrition,
and media entities. The user profile also contains attributes that represent the user’s settings
and information.

3

Workout Program: The workout program component encapsulates the system’s functionality
and data for creating, viewing, and logging workouts. Within the workout program component,
there are exercises and workout logs.

Nutrition: Similar to the workout program component, the nutrition component represents the
system’s functionality to capture diets. Within the nutrition component, there are diet logs.

Media: The media entity is related to the user profile entity. This entity captures the functionality
to import and display photos.

1.4 External Services
In addition to the components listed above, we also use some external services. All external
services have been found to be extremely reliable in testing.

1.4.1 Facebook API
To provide a secure and seamless sign-up and log-in experience for users, we decided to
leverage Facebook's token-based authentication system. Through using the user's Facebook
user ID and authentication token, the user workflow is significantly simplified, as the user just
needs one click to create an account or log-in. We also are able to extract data from the user’s
Facebook information, such as their name and profile picture.

1.4.2 Google Maps API
The Google Maps integration is used to provide an in-app experience for users to view nearby
gyms.

1.4.3 Waterloo Portal API
The Waterloo Portal integration is used to provide an in-app experience for users to view the
busyness level of a University of Waterloo gym. We display the number of people connected to
the wireless network in each gym. The Waterloo Open Data initiative can be found on GitHub.

1.5 Connectors
Software connectors are architectural blocks tasked with regulating interactions between
components. In our system, relevant connectors include:

1. Uploading and retrieving media requires a connection with AWS S3 storage
2. Real-time data stream connection with Waterloo Portal API
3. Procedure calls amongst the four major entities (profile, workout program nutrition,

media), as well as the routing logic (frontend API endpoint)
4. Database access and synchronization

4

https://github.com/uWaterloo/api-documentation

5. Integration with external services such as Facebook, Google Maps, and Waterloo APIs
6. Offline data persistence with Redux, and consequently function calls between views and

states
7. Load balancing between the EC2 instances

1.6 Configurations

1.6.1 Component Diagram

Figure 1: High-level component diagram of the application’s front and back ends

5

1.6.2 Physical Diagram

Figure 2: A visual of all the physical machines supporting each of the app’s components

6

1.7 Architectural Design
Given the functional requirements and non-functional attributes listed above, we have
determined a set of principal architectural decisions. In this section, we describe the
architectural styles, provide explanations for key decisions and how we satisfied the NFPs.

1.7.1 Architectural styles
GymApp.life employs a combination of architectural styles:

1.7.1.1 Client-server (layered)
Table 1: Client-server chart

Layer Client Server

1 Phone / Desktop browser Frontend

2 Frontend server Backend server

3 Backend server Database server

The 3rd party services (Facebook, Google Maps, Waterloo API) are considered as servers, with
their clients as observed in figure 2.

1.7.1.2 Blackboard (shared memory)
S3 is a shared file store between the clients and backend servers. Both clients and backends
read/write from/to S3.

1.7.1.3 Publish-subscribe / event-based (implicit invocation)
The frontend uses React which is implicit invocation based. Refer to section 2.2.3 for details.

1.7.2 Key architecture decisions

1.7.2.1 Why ELB?
Rather than deploying and managing our own load balancer, we opted to use ELB, which is
provided and maintained automatically by Amazon. ELB is extremely reliable with very high
throughput and provides many desirable features such as different balancing modes and health
checking. It also provides SSL termination, which is a desirable feature in a layered web server
architecture, with respect to efficiency and complexity.

7

1.7.2.2 Why RDS?
GymApp.life requires a database. RDS is a database service provided by Amazon. As with all of
AWS’s services, RDS is also extremely reliable. We used Amazon Aurora with PostgreSQL
compatibility for our RDS database, which has amazingly high throughput. RDS also performs
automatic snapshots for data backup.

1.7.2.3 Why Django?
We chose to use Django as our backend web framework. Django is a highly popular Python
web framework used by organizations such as Instagram, Pinterest, and BitBucket. We chose
to use Django because our backend developers are already highly experienced with Python and
Django. Moreover, Django provides a superior out-of-the-box experience in terms of developer
experience, community support, functionality, and reliability.

1.7.2.4 Why Keepalived?
Keepalived is a popular industry-wide solution for high-availability and load balancing.
Keepalived can be used to perform health checks between our backend servers and elect a
new master and execute scripts in failover scenarios. One of the team members had extensive
experience using Keepalived for this exact purpose and therefore, we chose to use this
software.

1.7.3 Satisfying NFPs

1.7.3.1 Dependability
Referencing figure 2, GymApp.life’s core architecture employs two frontends, two backends,
and Amazon’s Elastic Load Balancer (ELB). Having two instances of frontends and backends
help avoid single points of failure. ELB is provided and managed by Amazon and is therefore
trusted to be highly-available.

Automatic failovers are achieved with the use of ELB for the frontends and a virtual IP +
Keepalived for the backends. ELB is capable of detecting unhealthy nodes and automatically
removes them from scheduling on failure; nodes are automatically re-added when they are
determined to be healthy again. Keepalived is used to perform health checks within a group of
2+ backend nodes. There is one master backend active at a time, while the rest are on standby.
The virtual IP, which cannot fail, is assigned to the master, and on failover, the newly elected
master will assign the same virtual IP to itself. Thus, automatic failover is achieved for both the
frontend and backend. Data backups are unnecessary as the frontend and backend servers are
stateless, with all data stored in Amazon’s provided Relational Data Store (RDS), which is
trusted to be safe and automatically performs hourly snapshots.

8

http://www.keepalived.org/

Our servers are deployed across two availability zones. Since the servers are stateless and well
decoupled, they can be scaled up at any point in time. Amazon has an SLA of 99.9%, which
equates to a maximum of 8.76h of downtime per year. Adding more number of servers
increases the number of 9's in the availability percentage and decreases downtime. However, it
comes at an added cost of maintaining more servers. The compromise between cost and
availability depends on the revenue from the service. In our case, we chose to use two
availability zones. Offline data persistence is explained in section 2.2.4.

1.7.3.2 Portability
Our app is a responsive application that utilizes React on the frontend and is responsive for both
web and mobile browsers. The user logs into GymApp.life with a Facebook account, and can
perform actions in any platform, whether mobile or web. Regardless of the platform, the user’s
information is stored in the database, so it can seamlessly sync between the web and mobile
app. In terms of actual application execution, GymApp.life’s backend runs on Python and the
frontend runs on Javascript, which is portable on virtually every platform (Windows, MacOS,
*nix). Keepalived is open-sourced and can be compiled for any platform.

9

https://aws.amazon.com/s3/sla/
https://vijaygill.wordpress.com/2010/11/10/nines/

2 Design

2.1 Backend Design

Figure 3: Backend and Database UML

10

Figure 3 above depicts a class diagram derived from our database schema. It maps closely to
the backend and database subsystems detailed in figure 1.

As mentioned in the Components section, four major building blocks of the backend system are
the profile, workout program, media, and nutrition components. The class diagram above further
expands each component into its subclasses and draws the relations between them.

2.1.1 Strategy Pattern

Figure 4: Strategy design pattern used in backend

The strategy pattern allows a program to swap between different concrete implementations of
an abstract functionality at runtime. We leveraged this pattern in GymApp.life when building our
connector to AWS S3. Specifically, when the backend server is running, it can be configured to
run in debug or production modes which will swap the usages of Mock S3 and Boto S3.

The backend communicates with S3 through an S3 interface we wrote. In debug mode, Mock
S3 is used so that function calls do not actually communicate S3 and return mocked data. While
in production mode, Boto S3 is used to perform real API calls to AWS. We chose this pattern to
enable our backend to easily switch between the mocked and real implementations.

11

2.1.2 Object Adapter Pattern

Figure 5: Object adapter pattern used in the backend

AWS provides a Python client called Boto3 which is used to interact with S3 resources.
However, our backend developers do not program to Boto3’s interface and through the adapter
pattern, they are provided with an interface that abstracts away many concerns. Specifically, we
used the object adapter pattern to wrap Boto3 in our own wrapper class. We chose the adapter
pattern for the sole purpose of providing developers with an S3 interface more suitable than the
one provided by Boto3.

12

2.1.3 Factory Method

Figure 6: Factory Method used in backend

In order to transfer data between front and back ends, data structures need to be serialized and
deserialized. Since many of our backend classes inherit from abstract base classes, we used
the factory method design pattern to instantiate them from JSON strings. For example, our two
types of workouts programs (default and custom) inherit from an abstract workout program
class. They are respectively instantiated by two matching types of concrete serializer classes,
both of which inherit from an abstract serializer class. This same pattern is used to instantiate
many of our other backend classes, like Food Log and Uploaded Photos.

13

2.2 Frontend Design
Figure 7 below depicts a class diagram modeling our frontend React setup. It maps closely to
the frontend and client subsystems detailed in figure 1.

Figure 7: UML of frontend components

The frontend follows a very standard React + Redux setup. As an overview, it consists of raw
React components, which are reusable HTML blocks that come together to form containers to
be rendered in the browser. Because our app needs to function while offline, the frontend has its
own notion of local state, used to populate and navigate among different pages. This state is
called a Store, offered by Redux. Finally, the API Service middleware serves to send and
receive data from our backend server, and support asynchronous updates to the local state.

14

2.2.1 Composite Pattern

Figure 8: Composite design pattern used in React

The composite pattern is the most prominent design pattern used in web design. The DOM data
structure of web pages is represented by a rendering tree built from composition. React makes
this even more explicit with JSX classes that extend the React Component abstract base class.
Examples of this pattern used in GymApp.life include nested <div> and <Menu> classes with
<p> and <MenuItem> tags as leaves. We chose this pattern because it exactly allows us to
work with the DOM tree.

15

2.2.2 Decorator Pattern

Figure 9: Decorator design pattern used in Redux

React also offers facilities to augment classes by wrapping them in “decorating” classes. Leaf
classes of the DOM tree can be wrapped in a series of other react components to supply it with
additional properties and functions. As an example, consider the Nutrition History component in
GymApp.life. It is wrapped by the Nutrition Page component which gives it access to table data.
This is further wrapped by the Nutrition Container, giving it access to the entire application state.
We chose this pattern to help us modularize separate functionalities across all the wrapping
layers.

16

2.2.3 Event-Based Implicit Invocation
Javascript in web browsers inherently uses an implicit invocation architectural style. Specifically,
it is event-based and uses a hybrid bubble up and trickle down event dispatch mechanism.
DOM components are aware of the existence of events, and specific handlers can be
programmed into them. This is no different in React. For example, in GymApp.life, when “Log
out” is clicked in the settings menu, the application state changes to set the loggedIn flag to
false. The change in the flag is an event that eventually propagates to the listening App
component, who handles it by returning the user to the home log-in screen.

2.2.4 Frontend Framework Selection
We identified offline data persistence on mobile, the ability for the app to work on a modern
web/mobile browser, and seamless data sync between the frontend and backend as some of
our non-functional requirements. This forms the basis of the selection of our frontend
framework.

These requirements can be achieved by developing native apps for every platform we want to
support or by developing a progressive web app (PWA) that works both on the web and mobile.
Two approaches are discussed below.

1. Native apps: Developing native apps offer a very seamless experience for the user.
However, they are not platform agnostic and can be cumbersome to build, especially the
offline functionality. Frameworks like React Native allow you to be platform agnostic
between iOS and Android, but they do not support web.

2. Progressive Web Apps: The concept of PWA's support all of the non-functional
requirements listed above. They are meant to live in the user's app drawer for easy
access (only supported by Android at the moment). They offer close to native
experience. PWA can be implemented by using React and Redux together.

We initially started with the approach of developing native apps using React Native and a
separate web app for ease of access to the user. However, we soon realized this approach was
not feasible given the time constraint and was proving to be cumbersome. We combined
resources to work on one progressive web app to function on both desktop and mobile
browsers, and to also support the aforementioned constraints.

React also makes use of some nice design patterns such as one direction data flow (eg. using
Redux) and dependency injection. With dependency injection, React components receive
dependencies via props. Using the concept of PropTypes and factory design pattern,
dependencies can be validated while being passed down the tree.

17

https://developers.google.com/web/progressive-web-apps/
https://reactjs.org/docs/typechecking-with-proptypes.html

2.3 Data Flow Design

2.3.1 User onboarding workflow
When the user accesses GymApp.life for the first time, the user can create an account via
Facebook signup. Their basic information such as their name, email, and profile picture are
captured and used to populate their GymApp.life profile. Next, the user would be prompted to
answer questions relating to their fitness goals and lifestyle. This completes the signup
workflow.

Figure 10: Signup scenario sequence diagram

18

2.3.2 Analytics workflow
After the user has entered multiple workout or nutrition logs, they can go to the “Analytics”
module. From this screen, they can view graphs of how they have progressed in terms of
strength, weight, and nutrition.

Figure 11: View analytics sequence diagram

19

2.4 Coupling
Our architecture is highly modular and decoupled to support future development and scalability.
We have identified some scenarios below and explain how they scale with respect to coupling.

2.4.1 Adding new workout programs
We use the strategy design pattern for workout programs, so the user can easily switch
between a default or custom workout program. The addition of a new workout can be
represented as an Abstract Workout Program, which results in a smooth integration with the
existing views and other components.

2.4.2 Backend vs. frontend
Our frontend views are completely decoupled from the backend. To communicate with the
backend, we use RESTful APIs to enable statelessness, and development of new frontend
views can occur independently of the backend. This design enables high degrees of scalability.

2.4.3 New browser / device support
Since modern web browsers are omnipresent, our progressive web app can support any
modern browser. GymApp.life is decoupled from any native bindings of platforms. In addition,
we offer functionalities that are usually associated with native apps such as offline support.

20

3 Participation Journal
Table 2: Participation journal

Name Contribution

Bo Project management, mockup designs, documentation, DB schemas

Dongyu Database, backend, API, infrastructure, related documentation

Gautam Frontend, related documentation

Yuezhou Infrastructure, frontend, related documentation

21

